ESD-TR-67-430 MTR-516

USING THE READILY AVAILABLE ALGEBRAIC LANGUAGE
AS A COMPILER ENVIRONMENT

ESTI FILE COPY

ESD=TR=6T7=430

ESD RECORD CORY

RETURN TO
BCIENYIFIC & TECHNICAL INFORMATION DIVISION

ok
= e

~ (ESTI}, BUILDING 1211 ESD ACCESSION LISL
‘ﬂg;; Q%‘%"K&W;;&,‘Mw Ctain ot e o ESTI Call NO-_L‘-» 052‘)
= G.P. Steil, Jr. Copy No. of L

APRIL 1968

Prepared for

DEPUTY FOR COMMAND SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Project 512B
Prepared by

This document has been approved for public THE MITRE CORPORATION
release and sale; its distribution is un- Bedford, Massachusetts
mired Contract AF19(628)-5165

When U.S. Government drawings, specifica-
tions, or other data are used for any purpose
other than a definitely related government
procurement operation, the government there-
by incurs no responsibility nor any obligation
whatsoever; ond the fact that the government
may have formulated, furnished, or in any
way supplied the said drawings, specifico-
tions, or other data is not to be regarded by
implication or otherwise, as in any manner
licensing the holder or any other person or
corporation, or conveying any rights or per-
mission to moanufacture, use, or sell any
patented invention that may in any way be
related thereto.

Do not return this copy. Retain or destroy.

ESD-TR-67-430 MTR-516

USING THE READILY AVAILABLE ALGEBRAIC LANGUAGE
AS A COMPILER ENVIRONMENT

APRIL 1968

G. P. Steil, Jr.

Prepared for

DEPUTY FOR COMMAND SYSTEMS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Project 512B
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(625)-5165

This document has boen aporoved for public
release ond sale; its distribution is un-
limited.

FOREWORD

This report describes the use of an algebraic language in constructing
a simple compiler. It was written by The MITRE Corporation, Bedford,
Massachusetts, in partial fulfillment of Project 512B under contract number
AF 19(628)-5165.

REVIEW AND APPROVAL

Publication of this technical report does not constitute Air Force approval
of the report's findings or conclusions. It is published only for the exchange
and stimulation of ideas.

Al rn. P ron,

WILLIAM F. HEISLER, Colonel, USAF
Chief, Command Systems Division

ii

ABSTRACT

The use of algebraic command languages for things other than
preparing numerical algorithms has become somewhat popular, in
particular for writing compilers. The author feels that the
technique of using an algebraic command language for implementing
a compiler is a good solid practical idea deserving some additional
attention. He feels that this technique will be found particularly
useful by organizations not in the business of building commercial
compilers, but interested in the implementation of a small special-
purpose language, such as a query language for a model of a command
system. The purpose of this paper is to describe this technique
to such an audience and to comment on the extent of its applicability

iii

TABLE OF CONTENTS

LIST OF FIGURES

SECTION I

SECTION II

SECTION III
SECTION IV
SECTION V
SECTION VI
SECTION VII
SECTION VIII
SECTION IX
SECTION X
SECTION XI

REFERENCES

INTRODUCT ION
GENERAL APPROACH
UTILITY PROCEDURES

editor

nextatom and test
gather and scatter

join and unwind
generatedname

error

Other Utility Procedures

GLOBAL VARIABLES AND THE COMPILER PROCEDURE

A SIMPLE EXAMPLE

FLOYD'S EXAMPLE

TRANSLATING PANINI BACKUS FORM

ERROR HANDLING AND CREATIVE ADHOCERY

SYNTACTIC MACROS

EXPERIENCE

REMARK

SUMMARY

=
S ooy

11
11

14
16
28
29

48

=
c
3
=3
®
H

oSN PWLNE

15

16

17

18

19

20

21

22

Title

LIST OF FIGURES

The Main Procedure compiler

Translating
Translating
Translating
Translating
Translating

Translating
gatherl: an

Translating
Translating
Translating
Translating
Translating
Translating

<assignment statement>
<left part list>
<arithmetic expression>
<term”>

<factor>

<primary>

Extension of the Utility Procedures
<statement>
<alternatelist>
<alternate>

<factor>

<variable>

<compound tail>: 4 Mechanically

Generated Scanning Algorithm

Translating
Scanning
Translating

<compound tail>:
Algorithm
<compound tail>:

a Cleaned Up

the Addition of

Code to Perform the Translation

super join: an Extension of the Utility
Procedures

Translating

<compound tail>: Realizing the

Implications of Centralizing Brror Recovery

Here
Translating

<compound tail>: the Addition of

Code to Space Forward and Generate Error

Messages

Expanding <matrix declaration™:

a Mechanically

Generated Scanning Algorithm

Expanding <matrix declaration>:

Code to Perform the Expansion

Syntax of a

Macro Declaration Statement

vi

the Addition of

41
42

A

45

46

50

51
53

SECTION 1
INTRODUCTION

Six years ago, Robert W. Floyd remarked in his article "A
Descriptive Language for Symbol Manipulation:" '"The algebraic
command languages (ALGOL, IT, FORTRAN, UNICODE), although useful
in preparing numerical algorithms, have not in the author‘s opinion
proven themselves useful for symbol manipulation algorithms,
particularly compilers."[1] Robert W. Floyd would probably not say
that today, for the use of algebraic command languages for things
other than preparing numerical algorithms has become somewhat
popular, in particular for writing compilers. For example, the
Burroughs Corporation has programmed large portions of the software
for the B5000 and B8500 systems using a dialect of ALGOL, MITRE has
programmed FORSIM IV in FORTRAN IV, and according to the recruitment
ads in Datamation (at the date of this writing), United Airlines
intends to program most of its passenger reservation system in
Univac's FORTRAN V. The author feels that the technique of using
an algebraic command language for implementing a compiler is a good
solid practical idea deserving some additional attention. He feels
that this technique will be found particularly useful by organizations
not in the business of building commercial compilers, but interested
in the implementation of a small special-purpose language, such as
a query language for a model of a command system. The purpose of
this paper is to describe this technique to such an audience and to
comment on the extent of its applicability.

Using a tool for a purpose other than the one for which it was
intended requires an explanation. Usually the substitution of one
tool for another takes place when the proper tool is not available
and its fabrication is a non-trivial process. In our case the tool
is a compiler builder.

To say that compiler builders do not exist or are not available
would not be quite accurate, for work on such tools and the theory
behind them has been going on at a large number of places for quite
some time. This work has not been without significant results:
certain classes of ALGOL-~like (phase structure) languages have been
identified as being unambiguous; algorithms have been devised which
will accept a definition of the syntax of a language and determine
if the language is in such a class; and algorithms have been devised
for these classes of language that mechanically generate other
algorithms capable of scanning source text and producing representa-
tions of the source text syntax in a variety of formats. Around
these basic principles have been built a variety of systems for

programming compilers that are indeed compiler builders or "compiler
compilers." But at the present time these systems are by no means as
readily available as conventional software, in particular the algebraic
languages. Furthermore, despite the progress that has been made, the
advent of the instant compiler is still quite a way off. A large
amount of the work of implementing a compiler is still conventional
programming and debugging.

This paper suggests that in the absence of a readily available
compiler building tool that the available algebraic language be
adapted to such a purpose, as has been done already at several places.
It sketches an approach to such an adaptation, and it shows that
while this approach has the disadvantage of being relatively informal
(in the sense of taking strict advantage of the available theory),
it has the advantage that a compiler constructed as we are about to
describe can be maintained and modified by programmers with no special
training or experience. It also shows how this scheme lends itself
readily to what we have come to call '"creative adhocery'" and has the
audacity to suggest that such an adaptation of an algebraic language
has a usefulness as great as many of the fancier compiler compilers
of recent derivation.

GENERAL APPROACH

Our general approach in making a compiler building tool out of
an algebraic language is to augment the algebraic language and its
operating environment with a small set of tightly coded machine
language subroutines. These machine language subroutines provide
the data manipulating capabilities that are necessary for the con-
struction of a simple compiler and are not found in the algebraic
language. Communication between the algebraic language and the
machine language subroutines is facilitated by defining the interface
between them entirely in terms of integers. That is, every symbolic
datum that need be manipulated by a program in the algebraic language
is represented as an integer. The extra machine language programs
are not, however, a general-purpose symbol manipulation capability.
Such a task could become quite complex, and that would subvert our
basic goal of providing an economical base for constructing a simple
compiler.

A compiler to be implemented in this environment is structured as
follows: Each syntactic element in the source language is represented
by a procedure in the algebraic language, which is entirely responsible
for the translation of an instance of that syntactic element into some
object language. In performing its job of translation, this procedure
may appeal to other procedures representing syntactic elements;

procedures which build and manipulate symbol tables, procedures which
generate code, and so forth. Thus at the highest level there is a
procedure named PROGRAM which, when appealed to, compiles an entire
program. At a lower level a procedure named BOOLEAN is responsible
for translating a Boolean expression and returning the translation

as its value. This way of structuring translation, "top-to-bottom"
analysis, is frequently employed in syntax-directed compilers, where
the rules of syntax are stored explicitly in a specially formatted
table. The difference here is that each syntactic element, rather
than being represented in a table, is represented by a procedure.

The advantage of doing it this way can be seen by studying the design
of syntax directed translators employing the table method. Although
the syntax definition is usually neatly packaged, the algorithm which
generates the object code (or the output to the next stage of trans-
lation) is usually specified by a series of "actions' attached to

the syntax definition which are as ad hoc as the syntax definition

is general. But the algorithm which generates the object code is

the non-trivial part of tramnslation. Representing syntax by procedure
structure allows the translation algorithms to be expressed in a
general-purpose programming language rather than in a set of ad hoc
"actions.'" The formal structuring of a compiler in a way that is
rigidly tied to syntax is the contribution of the syntax directed
compiler. But it is the author's experience that the dream of
feeding a language specification as data to a general-purpose program
can lead the design of a compiler astray.

Looking through the literature the author notes that both Lietzkelz]
and Irwin[3] have suggested basically what is suggested here. The
difference is that we are pushing the idea further. Lietzke was
interested in employing a set of procedures that paralleled language
syntax only for the purpose of diagnostics (in the Share ALGOL compiler),
and Irwin only in generating random sentences of a grammar; we are
suggesting that nearly the whole compilation job can be done in such
an environment.

in constructing the examples in the sections that follow we have
assumed that the algebraic language which is to be used as a simple
compiler environment is ALGOL. Hereafter the term "ALGOL procedure"
will be used interchangeably with "algebraic language procedurz.'

SECTION II
UTILITY PROCEDURES

The utility procedures used to augment the normal ALGOL operating
environment are described in this section. They include an editor
for segmenting a source string, twoc elementary list operators, two
procedures for composing an object string, and one procedure for
generating identifiers. Unless otherwise specified, it is intended
that they be programmed in machine language.

editor

As any compiler writer will tell you, a large percentage of
compilation time in a typical compiler is spent in the simple process
of examining the source string one character at a time, breaking it
1nzo "avoms," and reducing each atom to its internal representation.
This aspect of compilation is usually separated off as a tightly
coded subroutine, and no exception is made here. The machine language
subrout ine which we postulate to do this job is known as the editor.
{ts input arguments could include such. things as the source or
location of a string in the source language, a list of characters
which are to serve as separators, and other information regarding
the editing of the source text into atoms. But for our purposes
here we wiil assume the editor itself bears the full responsibility
for knowing or finding out these details, and consequently has no
input arguments. 1Its output value is an integer which may be
thought of as a pointer to the first atom of the edited source
string. We shall see how to use this pointer shortly.

For the purpose of our examples below we will assume that
the editor segments source strings according to the following rules:

(L) All characters except A,B,C,...,2,0,1,2,...9
are separators.

(2) All separators except blank (b) are atoms.

{(3) Any sequence of non-separators betwean two
separators is an atom.

Example: The editor segments the source string
A+T(ANQ;7) -F ; IFbbbANY
into the atoms

A+ T (ANQ ; 7) -~ F ;

I
2>
=
<

nextatom and test

Two machine language subroutines are used to scan along an
e¢dited source string.

nextatom fetches the next atom in a source string. nextatom
has one argument, an integer serving as a pointer to an atom of an
edited string. nextatom returns as an output value, an integer
serving as a pointer to the next atom in the edited string. nestatom
returns a special terminal integer, say A, if there is no next atom.

Example: Assume the source string
ANS + 47%B

is ready at an input source when the following segment of
code is executed:

integer X;

X : = nextatom (nextatom(editor))

The contents of the variable X will be replaced by an integer
serving as a pointer to the atom 47.

The phrase '"integer serving as a pointer" occurs so frequently
that we will use in its place simply the word "pointer.'" Thus we
will say '"the contents of the variable X will be replaced by a
pointer to the atom 47."

test is a logical valued procedure used to compare an
arbitrary string to an atom in an edited source string, and on the
basis of the comparison advance a pointer pointing to the edited
source string. Thus test requires two arguments: a string and a
pointer; and test returns two values: true or false, and a pointer
to the next atom in the source string when the gsaﬁgrison yields
true. To make the use of the function test as natural as possible,
?ﬁamfollowing conventions have been adopted regarding the input
arguments to test and the values it returns. test is defined to
have one explicit argument, the string to be compared; and one
implicit argument. the name of a variable containing a pointer to
an atom in an edited source string. The implicit argument is
always the name of the global variable input (where it is not
possible for external machine language subroutines to reference
variables in the algebraic language programs, the procedure test
can be redefined to have two explicit arguments). If the value of

the comparison is true. test returns the value true and replaces the
pointer in the variable named by the second arg&ﬁggt (in our case,
the implicit argument "input") by the value of the procedure nextatom
operated on that pointer. Otherwise, test returns false. Using
these conventions the function test appears to have one input argument,
a szring, and one resultant value., either true or false.
L~ arard O MNAN

Example: Assume the variable input has been declared

appropriately and that it contains a pointer to the

beginning of the following edited source string:

2
Then 1f the statement
rest {'+%)

1s executed, the variable input will subsequently contain a pointer
£o tne atom 1. If, with input poirnting to the atom 1,

test('*")
is executed, the variable input will not be changed.
Assuming the same edited string is pointed to from the

varizable input, the value of the following expression will be false
{and input will subsequently point to the atom ¥):

if test('+') and not test('l') then true else test{'l')
~ae [a” o5 SV N S LAV oV oV SV IRV gV o VI AV A A

gather and scatter

gather and scatter are two very simple list processing
procedures. gather accepts two integer arguments and returns a
single integer as a value. The integer which gather returns as a
value can be thought of as a list whose elements are the two integers
supplied as arguments. scatter does just the opposite. scatter
accepts three arguments. the first of which is an integer previously
returned by a gather operation, the other two arguments are the names
of variables which are to receive the two integers represented by
the first argument.

Example:

irteger a,b,c:
~ e Catad

a := gather (2,4);
b := gather (7,3);

scatter (b,a,c);
scatter (c,c,a)

After this sequence of code has been executed, the variable
a contains the integer 4, and the variable ¢ the integer 2.

gather and scatter are readily programmed in ALGOL, and are
shown below. gatherarray and other undefined identifiers are assumed
declared in a higher level procedure and will be discussed later.

Note that for debugging purposes it is convenient to be able
to distinguish the integers manipulated by gather and scatter from
the ones being manipulated by editor, nextatom and test.

integer Rﬁgcedure gather (argl,arg?) ; XELRS argl, arg?;

integer argl, arg?;

be%in integer workl ;

iﬁ nextavailable = 9999999999 then

error (@)
else
workl := nextavailable;
nextavailable := gatherarray [workl];

gatherarray ([workl]. := argl;

gatherarray (workl+l] := arg?;

gather := workl

end

oy

end gather

procedure scatter (from, tol, to2) ; value from;
[a eV oV o v V]

integer from, tol, to2;

begin
tol := gatherarray [from];
to2 := gatherarray [from +1];

gatherarray [from] := nextavailable;

nextavailable := from

end scatter
Ay T m———

join and unwind

join and unwind comprise a mechanism for generating object
code. join is used during translation to tie together pieces of
code as they are generated, and unwind is used subsequent to
translation to tidy up the final string of object code.

Jjoin, like test, is defined with special conventions that
make its use as natural as possible. In fact, as we are about to
define it, join violates two of the rules of ALGOL. First, it has
a variable number of arguments; and second, it allows any of its
arguments to be either strings or integers. Both of these conver
niences can be dropped, if necessary. Jjoin can be defined as a
procedure with two arguments (and then applied repetitively); and
since the set of string arguments that are normally given to it is
small, they can easily be represented as integers (in particular,
we could define a simple function which mapped the strings of
interest into integer representations). But it has been our
experience that ALGOL compilers are quite permissive about the
ways in which external (machine language) procedures are called,
and that in fact the join statements as they are defined are
permitted.

As stated above, join accepts a variable number of arguments.
Each argument may be either a string, which represents itself, or
an integer. No integer argument to join represents itself. Zero
represents the null argument and is ignored. A non-zero integer
may represent either:

(1) an atom in an edited source string;

(2) a field in a symbol table (to be ‘discussed
below) ; or

(3) the result of a previous join operation.

join returns as its output value an integer which represents the
concatenation of its arguments. 1In this way join is similar to
gather. join and gather are used in different ways, however. gather
is used whenever a temporary compression of data is called for,
whereas join permanently associates data until the end of translation
and is intended primarily for the construction of object code.

unwind is used at the end of translation for the final
construction of object code. Whether or not unwind is actually
needed depends on how join is implemented. The suggested imple-
mentation is as follows: join examines its arguments in the sequence
in which they are supplied. If an argument is a string, or an
integer representing the result of a previous join operation, the
argument is written on 'tape" without any further evaluation. If the
argument is an integer representing an atom in an edited source
string, or a field in a symbol table, then the actual atom or value
of the field is fetched and written on the tape. When the arguments
have been exhausted a terminal mark is written on the tape, join
returns as its value the integer address of the first value it wrote
on the tape.

The function of unwind is: given an integer address to the
join tape, construct a single string consisting of the orderly con-
catenation of all the values written at that place on the tape. Where
a pointer to another place on the tape occurs, appeal to unwind re-
cursively to fetch the string consisting of the orderly conecateration
of all the values written at that place on the tape, and so forth.

Thus unwind has one argument., an integer address to the join tape,

and returns as its value a pointer to an orderly concatenated string
which is the object code of a translation. By orderly concatenation
we mean concatenation according to some simple rules that make sense
for whatever object code (or class of object codes) is being generated.
If, for example, ALGOL is the object code being generated, then it
would make sense to form the concatenation by inserting 2 space between
values,

join is used throughout the translation process to form
pieces of the object code, which may then be manipulated as simple
integers regardless of their length. wunwind is used only at the
end of translation to unravel the join tape and produce the final

version of the object code. Clearly the integers which represent
the result of join operations must be distinguishable from other
irteger representations.

Example:

integer a.b.es
AL Iy T —

a := join ({'R','8",'T');
b := join ('P','Q',a,'U");
¢ := join (b.b);

a := unwind (c);

After this string of code has been executed, the variable a will
contain a pointer to the object code "P QRS TUPQR S T U".

generatedname

When generating object code it becomes necessary on occasion
to invent an identifier for use as the name of a label or a variable.
generatedname is a procedure with no arguments that returns an
integer representing an identifier. generatedname returns a unique
value each time it is called.

Example:

integer a,b;

[V2V A VAV

a := generatedname;

b := join (a,':G0',a,';")

After the execution of the above code, the variable b contains a
representation of the object code:

GN1 : GO GN1;

where GN1 is an identifier that might be generated by generatedname.

10

error

error is a procedure that generates diagnostic messages In
a full blown system error would normally have a full set of input
parameters. These might specify an index to a standard error message
stored in a catalog of error messages, parameters to be substituted in
the standard message, specification of where the message is to appear,
and so forth. For our purposes here error will accept just one input
parameter, an integer designating a standard error message.

Example:
error (67)

Other Utility Procedures

The utility procedures that have been outlined above form
the basis of any complete set that would be required for the imple-
mentation of a simple language, and are sufficient for all the
examples that have been included in this article. Depending on
exactly what language is to be implemented, some additional utility
procedures may be required. In the informal framework we've described,
they can be added ad infinitum according to the whim of the designer.
The basic idea is to separate into a machine language utility procedure
those algorithms which either consume a large amount of space or time,
or cannot otherwise be conveniently programmed in ALGOL. The general
appearance of the complete compiler is that while the majority of the
logic of translation is in ALGOL, the majority of time-consuming work
is done in the machine language utility procedures.

One set of utility procedures that are conspicuously missing
in the discussion above are symbol table manipulation procedures. They
have been left out in part because they are not essential for the
examples to be employed below (and certainly not essential to the
concepts discussed), but also because we feel the design of symbol
tables should be tailored to each individual language, even to the
extent of their interface with the procedures that use them.

11

SECTION III
GLOBAL VARIABLES AND THE COMPILER PROCEDURE u

The general approach to the structuring of a simple compiler that
is being delineated here is to represent each syntactic element in the
source language with a procedure in ALGOL (or other algebraic language)
which is entirely responsible for the translation of an instance of
that syntactic element into object language. At the top of a hierarchy
of such procedures there is, of course, one '"main" procedure. This main
procedure has the responsibility of declaring all global quantities
(simple variables, arrays, and procedures), and performing any
initialization and finalization that may need to be done.

An example of a main procedure for a simple compiler, which is
named compiler, is shown in Figure 1. compiler is quite transparent

except (alas) when it comes to its parameters. Because the most
important of its parameters are not acceptable ALGOL data types,
and because the integer representation scheme applies only inside
the compiler itself, it is necessary to go underground and specify
the communication of parameters to and from compiler with conventions -
that lie outside the scope of the ALGOL language.
The input values supplied to a compiler normally include: .
(1) a source text
(2) a list of resources available
(3) rules to be followed during translation (ranging from
the specification of an end of text symbol to a

complete language syntax specification)

(4) indicators of operating mode (on-line or off-line,
debugging or production, etc.)

(5) designation of the disposition of output values.
The output values produced by a compiler normally include:
(1) an object text
(2) diagnostics <

(3) listings of the source and object texts

12

The conventions that have been assumed by compiler and its sub
structure of procedures in the acquisition and disposition of input
and output values are as follows:

(1) the procedure editor has the responsibility for obtaining
the source text and delivering a listing of the source
text.

(2) resources available are listed as explicit parameters
(only one is listed in Figure 1)

(3) the procedure unwind has the responsibility for delivering
the object program

(4) the procedure error has the responsibility fot disposing
of diagnostics.

Presumably editor, unwind, and error are machine language
procedures that have been programmed to agree on the acquisition
and disposition of input and output values.

For the purpose of the examples which follow, the reader
should keep in mind the following things about global variables
and the compiler procedure:

(1) the variable input contains a pointer to the current
atom of the source string.

(2) the wvariable translation is used to communicate the
translation of a syntactic element from the procedure
that translates it to the procedure calling for the
translation.

(3) a procedure for each syntactic element is declared in
the procedure heading of compiler: each procedure that
corresponds to a syntactic element returns a value of
true when it successfully scans and translates an
{nstance of the syntactic element it represents, and
a value of fmlse otherwise.

L et e av vy

13

SECTION IV
A SIMPLE EXAMPLE

[4
The syntactic element <program> from the Revised ALGOL 60 report"’
has been chosen as a simple example. A program is defined in Panini
Backus Form(3] as follows:
<prpgram> ::= <block>|<compound statement>

An ALGOL procedure for translating this syntactic element is:

Boolean Erocedure program;

begin

program := iﬁ block then true else compoundstatement
end
[a¥ aV)

14

Boolean procedure compiler (gatherarraylimit); value gatherarraylimit,;
ONIONTINIONINSNING NI OGN \INSNI N O

integer gatherarraylimit;

comment other appropriate arguments are inserted in place above,
LAV oV oV VoV ¥V V]
begin

inteEer array gatherarray (1 : gatherarraylimit]:

integer input, nextavailable, translation;
LT AV AV oV oW ¥ o ¥

Erocedure initializegatherarray

begin integer 1i;
NN, ANANAAN T

for 1 := etep 2 until gatherarraylimit - 3 do

A

gatherarray [i] := it+2;

gatherarray [if gatherarraylimit/2 = gatherarraylimit+1)/2

then gatherarraylimit-2 else gatherarraylimit-1] :=

A Ao

9999999999;

nextavailable := 1

end

[V oV

comment all other global array, simple variable and
LaV ar oV oV oV o e d
procedure declarations are inserted here,

initializegatherarray;

input := editor;

translation := @;

comment all other initialization steps are inserted here

AN AN

compiler := program:

unwind (translation);

comment all other finalization steps are inserted here;

end compiler
en¢ compller

Figure 1. The Main Procedure compiler

15

SECTION V
FLOYD'S EXAMPLE

The example chosen by Floyd in (1] is a simple assignment
statement defined by these Panini Backus expressions:

<assignment statement> ::= <left partlist> <arithmetic expression>

<left part list> ::= <variable> :=\<1eft part list> <variable> :=

<arithmetic expression> ::= <term>‘<adding operator> <term>|
<arithmetic expression® <adding operator> <term>

<term> ::= <factor>|<term> <multiplying operator> <factor>

<factor> ::= <primary>l<factor>T<primary>

<primary> ::= <procedure identifier>(<arithmetic expression>ﬂ
(<arithmetic expressioﬁ>)\<variab1e>

The object language into which simple assignment statements are to be
translated is a simplified ALGOL in which only one operation is
permitted to the right of ":=", and only one variable to the left.

One way in which this example is more difficult than the
preceding one is that some actual translation will have to be done,
and the utility procedures will need to be employed Another way
in which this example is more difficult is that left recursion is
used in four of the six definitions. In top-to-bottom analysis,
left recursion is a problem that has to be handled as a special case
To see the problem, consider the definition:

<> ::=<a>B | C

A procedure A is constructed with the responsibility for translating
syntactic elements of type A. But the first step A takes is to
appeal to A in order to check out the first alternative of the
definition of A. An endless sequence of operations results. This
difficulty is overcome in this way:

The alternative definitions for a syntactic element are
grouped into two categories: those which begin with an instance of
the syntactic element being defined, and those which do not. Each
of the definitions that do not so begin are attempted first. If
none of those definitions can be satisfied, then there is no hope

16

for scanning and translating an instance of the syntactic element
being attempted, and the attempt is given up. If one of those
definitions is successful, then instead of being satisfied with
success, the left recursive definitions are examined, The first
element of each left recursive definition is deleted (the recursive
mention of the syntactic element being translated) and the remaining
definition segments are matched against the source string repetitively
until no more scanning can be done.

Thus, if the string
BCDBEG CTFD
is tested against the definition
<A> ::=<a>B | C
it would be rejected because it does not satisfy the definition C.
The string
CBBBBBCDBCTFSB
would, on the other hand, yield an instance of A, namely,
CBBBBB.
The non-recursive definition (C) being satisfied, the
remaining definition segment of the left recursive definition (B)

is successfully matched against the source string five times.

ALGOL procedures for translating assignment statements as
defined above are shown in Figures 2 through 8. Note the definition

of gather 1 to extend the usefulness of the utility procedures.

The yreader will probably find it useful to consider an example.
For the source string

P :=Q := A * sin(B)/C t (-D)

the object string

Tl := sin(B);
T2 := A*T];
T3 (= C t -D;

17

Boolea Erocedure assignmentstatement; "

L oV AV AV ¥ eV "]

begin integer workl, work2, work3, worké;

if leftpartlist then

A VA V]
Regla

scatter (translation, workl, work2);

arithmeticexpression;

scatter (translation, work3, work4);

translation := join (work3, ';', workl, worké4, ';', work2);

assignmentstatement := true
end
else
assignmentstatement := false
[a ¥ o LV V]

end assignmentstatement

Figure 2. Translating <assignment statement >

18

Boolean Procedure leftpartlist;

begin inte%er saveinput, workl, work2;

saveinput := input;

if variable then

if test (':=') then
workl := translation;
work2 := @;
go to leftrecursivealternate
end
end

input := saveinput;

leftpartlist := false;
go to end ;

leftrecursivealternate:

saveinput := input;

iﬁ variable then

[V oV V)

begin
if test (':="') then

Figure 3. Translating <left part list >

19

Eggiq
1 1

work2 := join (workl, ':=', translation,

"5, work?2);

workl := tramslation;

go to leftrecursivealternate

SRE
end
input := saveinput;
translation := gather (join (workl, ':='), work2);
leftpartlist := true;

end: end leftpartlist

Figure 3. Translating <left part list > (concluded)

20

Boolean Erocedure arithmeticexpression;
AN AN oV o W VoV oV

be%in inte%er work]l, work?;
—_—i Nty N D=y

= 35 term then
begin
workl := translation;

go to leftrecursivealternate
end;

LV VoV

lﬁ test ('+') then
be%in
term;

workl := translation;

go to leftrecursivealternate
end;

££ test ('-') then

be%in

term;

workl := gatherl (gather (@#,@), join ('-'), translation);

go to leftrecursivealternate

end;
Lava¥ a¥]
arithmeticexpression := false;
[a% oV oV oV o V]
go to end ;

leftrecursivealternate

if addingoperator then

Figure 4. Translating <arithmetic expression >

21

begin

[a%a%. 2" ¥}

work2 := translation;
term;
workl := gatherl (workl, work2, translation);

go to leftrecursivealternate

end;
arithmeticexpression := true:
translation := workl;

end: end arithmeticexpression
— A

Figure 4. Translating <arithmetic expression > (concluded)

22

Boolean procedure term;
TNANING ANINIONSSONLNININI N

A

begin integer workl, work2;

if factor then workl := translation
else begin term := false; go to end end;

leftrecursivealternate:

if multiplyingoperator then

work?2 := translation:
factor;
workl := gatherl (workl, work2, translation);

go to leftrecursivealternate

end ;

A

term := true;

translation := workl;

end: end term

A

Figure 5. Translating <term>

23

Boolean procedure factor;
PPN AUy T——

be%in ihteger workl;

iﬁ primary then workl := tramslation
else begln factor := false; go to end EES;

le ftrecursivealternate:

if test ('t') then
be%in
primary;

workl := gatherl (workl, join ('?t'), tramnslation);

go to leftrecursivealternate

end;
[avavav]
factor := true;
[avaV eV o¥]
translation := workl;

end: end factor

(% VoV

Figure 6. Translating <factor>

24

Boolean procedure R
P u primary;

beEin inte%er workl, work2, work3, temp;

primary := true;
[atata V)

i£ procedureidentifier ERER
workl := translation;
test ('(");

arithmeticexpression;

test (')');

scatter (translation, work2, work3);

temp := generatedtemp;

translation := gather (join (work2, ';', temp, =

workl, '(', work3, ')'), temp)
end
else

if test ('(") then

be%in
arithmeticexpression;
test (')")
end
[a¥ 2" %]
else
oY a¥ a¥ o¥]
if variable then translation := gather (¢, translation)
g T eununary
else
" a¥ o an]
primary := false
[¥ a¥ o~ o]

end primary
Figure 7. Translating <primary>

25

integer procedure gatherl (leftoperand, operator, rightoperand):
L g S A 4 0 AT AT Y oV

value leftoperand, operator, rightoperand:

AN

integer leftoperand, operator, rightoperand;

[V gV VL VL V)

begin integer leftcode, leftvalue, rightcode, rightvalue, temp

scatter (leftoperand, leftcode, leftvalue);

scatter (rightoperand, rightcode, rightvalue):;

temp := generatedtemp;

gatherl := gather (join (leftcode, ':', rightcode, ';°,

temp, ':=', leftvalue, operator, rightvalue), temp)
Lemp

Sﬂg gatherl

Figure 8. gather 1 : an Extension of the Utility Procedures

26

T4 := T2/T3;
Q = T4;
P :=Q;

will be generated.

A comparison of Figures 2 - 8 with Floyd's original example
will show the former to be far lengthier, but no less lucid for it:

and if the utility procedures have been implemented cleverly, no less
efficient.

27

SECTION VI
TRANSLATING PANINI BACKUS FORM

The regularity of Figures 2 through 8 suggests that the procedures
there may themselves be generated mechanically. Considering Panini
Rackus Form as a source language, its definition in Panini Backus Form
looks like this (circles are used to distinguish constants in the
language being defined from constants in the metalanguage):

<statement® ::= <variable> (:} <alternate list>
<alternate list> ::= <alternate>l<alternate 1ist>(I><a1ternate>
<alternate> ::= <factor>|<a1ternate> <factor>

<factor> ::= <variab1e>|<basic symbol string>

<variable> ::=(:)<identifier><:)

A set of ALGOL procedures for translating this language into an
ALGOL equivalent are shown in Figures 9 through 13. Two simplifying
assumptions have been made:

(1) that it is valid to accept the first alternative in a
definition that matches without checking to see if there
is a longer one that matches; and

(2) that no definition has more than one left recursive
alternate.

The object code that is produced from a source string of Panini
Backus Form is sufficient for scanning instances of the language
defined, but additions must be made by hand before translations can
be made.

An example of a source string in Panini Backus Form that has
been translated by the procedures in Figures 9 through 13 is the
five lines above. The object code, suitably doctored so that a
translation is made to ALGOL, is shown in Figures 9 through 13.

28

SECTION VII
ERROR HANDLING AND CREATIVE ADHOCERY

Unfortunately, this compiler scheme has no facility for the
automatic detection and reporting of errors in the source text. The
algorithms generated from Panini Backus Form by the procedures of
the preceding section simply back up when the source text is not
syntactically well-formed. This means that when the slightest error
is embedded in the source text, the highest level procedure simply
returns false, with no indication as to how many errors were found,
what kind of errors were found, or whether or not the errors found
would have prevented meaningful execution. But although there is
no automatic facility for error handling, there are no obstacles
barring the implementation of a well formulated error policy.

With simple modifications to the algorithms mechanically generated
by<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>